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1 Basics

We will call the times between renewals X1, X2, X3 etc., and these variables are
IID with mean E[X] and standard deviation σ. It is convenient to introduce the
“Coefficient of Variation”, c = σ/E[X], which is often expressed as a percent.
For example, if the average time between renewals is 15 minutes and the stan-
dard deviation is 5 minutes, then c = 5/15 = 1/3 ≈ 33%. The advantage of this
is that if we switch to expressing time in hours, the c does not change; it is still
33 percent. We also use the Squared Coefficient of Variation, c2 = (σ/E[X])2,
because it appears in quite a few formulas. It is usually not expressed as a
percent. It is important to keep in mind that Exponential distributions have
c = 1 = c2. If a distribution has c2 < 1, it is less variable than Exponential,
such as Erlang distributions, which are sums of IID Exponentials. If a distri-
bution has c2 > 1, it is more variable than Exponential; the classic example is
Hyperexponential distributions, which are mixtures of different Exponentials.

Other important definitions are: the time of the n’th renewal,

Sn =
n∑

i=1

Xi

and the number of renewals from time 0 to time t, not including the renewal at
time 0:

N(t) = number of renewals in (0, t]

Also important is the “Renewal Function”, which is denoted m(t) and is the
mean number of renewals by time t: m(t) = E [N(t)]. According to Nelson
(page 258), its Laplace transform is

m̃(s) =
F̃ (s)

s(1− F̃ (s))

The renewal function is often hard to compute. Figure 1 shows the renewal
function for 3 processes: one with Hyperexponential-2 lifetimes, one with Expo-
nential lifetimes (that is, a Poisson process), and one with Erlang-100 lifetimes.
Notice that m(t) doesn’t really approach the diagonal line for the non-Poisson
processes. We will get to this later.
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Figure 1: Renewal functions for Hyperexponential-2, Exponential, and Erlang-
100 lifetime distributions

2 Central Limit Theorem, and Adjustments

The classic Central Limit Theorem applies easily to the time of the n’th renewal,
for very large n:

Sn ∼ Normal
(
nE[X], nσ2

)
In practice, n = 30 is probably large enough if c2 ≤ 1.

The Central Limit Theorem for Renewal Processes (CLTRP) is slightly more
complicated. Instead of working on Sn, it works on N(t) for large t. The basic
version is

N(t) ∼ Normal
(

t

E[X]
,

t

E[X]
c2

)
This often appears in books in the following not-so-nice form:

N(t) ∼ Normal
(

t

E[X]
,

tσ2

E[X]3

)
We might be tempted to think the variance should be σ2t/E[X], since we expect
t/E[X] events, each of which has variance σ2. However, this formula does not
even have the right dimensions; N(t) and Var (N(t)) are dimensionless, whereas
σ2t/E[X] has the dimensions of time-squared. How big should t be in order to
use the CLTRP? Big enough so t/E[X] > 30, or so, if c2 < 1.

Now, it turns out that the mean and variance listed above are not as simple
as they might appear. We will step back for a while and consider two functions:
y = 2x and y = 2x− .5. You will agree, I hope, that these two functions never
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get closer as x grows large. However, they get closer relative to their size. That
is,

lim
x→∞

2x

x
= 2

and
lim

x→∞

2x− .5
x

= 2

The above statement of the CLTRP is ignoring constant terms in the mean
and the variance, because it is thinking about relative distances. Here are the
formulas with the offset terms included:

E [N(t)] = m(t) → t

E[X]
+

c2 − 1
2

For the variance, define k1 = E[X], k2 = E
[
X2

]
= σ2+E[X]2, and k3 = E

[
X3

]
be the first 3 raw (not central) moments of the lifetimes.

Var (N(t)) → t

E[X]
c2 +

5k2
2

4E[X]4
− 2k3

3E[X]3
− k2

2E[X]2

Notice that the offset for the mean includes the 2nd moment of lifetimes, and
the offset for the variance includes the 3rd moment of lifetimes. Also notice
that for Poisson processes, which have c2 = 1, the mean offset is zero. The
mean offset is negative for lifetimes which are less variable than Exponential,
and positive for those which are more variable than Exponential. The most
negative that the offset can be is −1/2, for deterministic lifetimes. The formula
for the variance is not common, but occurs in Tijms’ “Stochastic Models” page
75 Problem 1.6, and also in Cox, “Renewal Theory”.

3 Inspection Paradox

The inspection paradox is this: if a renewal process has been going on for a
long time and you arrive and ask what the lifetime of the current item is, the
answer is on average longer than the average lifetime of all items. That is, if
each item lasts a week on average, the randomly-inspected item will (on average)
last longer than a week.

This paradox is related to the “Equilibrium distribution” of an item’s life-
time, which is the same as the distribution of residual life. This is also the same
as the distribution of the age of an item. The formula for this is

Fe(x) =
1

E[X]

∫ x

0

(1− F (y))dy

Its density is then

fe(x) =
1

E[X]
(1− F (x))
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Its Laplace transform is (from Ross’ “Stochastic Processes” book)

F̃e(s) =
1

E[X]
· 1− F̃ (s)

s

Its raw (not central) moments are (from Nelson, page 265)

E
[
Xk

e

]
=

1
E[X]

·
E

[
Xk+1

]
k + 1

So, in particular, its mean is

E [Xe] =
1

E[X]
·
E

[
X2

]
2

=
c2 + 1

2
E[X]

The mean lifetime of an inspected item is twice this: (c2 + 1)E[X].
Also, the failure rate of the equilibrium distribution is 1/MRL(t), where

MRL(t) is the mean residual lifetime at time t (of the original lifetime, not the
new equilibrium lifetime).

It turns out that the age and excess of a renewal process at any particular
time are not independent. So, if we want the distribution of the overall lifetime
of the inspected item, we can’t just take a convolution of the age distribution
and the excess distribution (which are both the equilibrium distribution). As
it turns out, we can apply a length-biased sampling argument and we find that
the density of the lifetime of an inspected item is

fi(x) = x · f(x)/E[X]

where the subscript i denotes the inspected lifetime.

4 Other Applications of SCV

For a Compound Poisson process with rate λ, where each event has size Yi,
the mean of the total size by time t is of course λtE [Y1]. The variance you
might guess to be λtVar (Y1), but that intuition includes only the variability
in the event sizes, and not the variability in the number of events. Altogether,
after using the conditional variance formula, we get λtE

[
Y 2

1

]
which is not very

intuitive. We can transform this to λt(c2
Y +1) · (E [Y1])2, which is a little better.

4


	Basics
	Central Limit Theorem, and Adjustments
	Inspection Paradox
	Other Applications of SCV

